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Abstract. Chord length distributions describe size, shape and spatial arrangement of geometrical objects
(particles). The chord length distribution is in principle proportional to the second derivative of the cor-
relation function of small-angle scattering. It is calculable from a relative measurement of the scattering
intensity I(h). In structure research, the characterization of numerous particle systems can be achieved by
comparing experimental chord distributions with theoretical ones, provided the latter are available with
sufficiently high precision for a lot of fundamental, universal shapes. Both sides of this concept are exem-
plified: - the step from a relative measurement of the scattering intensity of an isotropic two-phase sample
to the chord length distribution (errors in hk and in Ik, limited h-interval, corresponding to the region
(1 − 2) nm < r in real space, must be observed); as well as the geometric matter of calculation of chord
distributions as fingerprints for basic geometric figures, including the non-convex case.

PACS. 61.10.Eq X-ray scattering (including small-angle scattering) – 61.12.Ex Neutron
scattering techniques (including small-angle scattering)

1 Introduction

Chord distributions are fundamental functions in many
various fields: microdosimetry, dosimetry of internal emit-
ters, detector response and radiation shielding, stereo-
logical analysis of two-dimensional sections in electron
microscopy, quantitative image digitalization and the
acoustical design of auditoria, geometric and dielectric
characterization of porous media, investigations of electric
conductivity and transport, and relaxation phenomena in
porous media [1–6].

There exist physical apparatuses in structure research
which indirectly measure the distribution law of random
chords of a three-dimensional sample. This corresponds
to the practical stereological situation where an isotropic
sample containing particles of unknown size and shape and
arrangement is interradiated by a beam of monochromatic
X-ray light.

In material research, microheterogeneities (sizes from
some nanometres up to some hundred nanometres) of se-
lected materials are investigated by scattering methods.
One of the structure functions resulting from such exper-
iments is the chord length distribution (c.l.d.). c.l.d.’s are
obtained, whenever a geometric figure of any dimension
is randomly intersected by straight lines. The investiga-
tion of c.l.d.’s is a special geometric matter; for the gen-
eral case see Stoyan et al. [1], Serra [2] and Cabo and
Baddeley [7]. Chord length distributions can be defined
for any geometric object. They reflect the size and the
shape of the object.
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There are different methods for the formulation of
the c.l.d.’s from the viewpoint of geometric probabilities
[1,2,8]. In order to avoid problems here, the mere defini-
tion of the distribution function of a random chord length
variable ξ, F(`) = Pr(ξ < `) should always be used.

The information in a Small-Angle Scattering curve,
SAS-curve I(h) of nanometer particles, can be used for
shape and size characterization via correlation function,
c.f. γ(r), of SAS, Guinier and Fournet [9], Feigin and
Svergun [10] and Tchoubar [11]. The connection between
an SAS-experiment of a realistic two-phase sample and
the c.l.d. of stochastic geometry is based on the following.
The atomistic construction of the matter determines an
upper scaling limit in SAS. Below that, particle borders
have no geometrical sense. The distances between single
scattering centres are not resolved in the SAS experiment.
Therefore, the sample-densities in the r-interval rmin < r
can be approximated by piecewise continuous functions.
The practicable limit is rmin = (1− 2) nm. Thus, for the
geometrical description of particle models in space the fine
structure of the particle surfaces, r < rmin, is completely
smoothed out.

The outline of this review article is the following. Sec-
tion 1.1 compares the so-called distance distribution den-
sity function p(r) of a particle (see [10] on pages 40-42),
with the c.l.d. While p(r) reflects all distances between
the scattering centres of an isotropic two-phase particle
arrangement in the sample, the set of intercepts exclu-
sively reflects distances between interfaces of particles.
Here, the strategy which connects the c.l.d. A(`) in terms
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of γ′′ can be introduced in the simplified form

A(`) ≡ fµ(`) = `γ′′(`)

fν(`) = `γ′′(`). (1)

Only a single conversion element is necessary in equa-
tion (1), and the second derivative of the small-angle scat-
tering correlation function (c.f.) allows the determination
of the set of c.l.d.’s fµ, fν . Section 1.2 explains the con-
nection between the scattering experiment and γ′′(r). The
functions fµ and fν describe two different types of ran-
domness for the intersection of straight lines with geo-
metric forms, see Section 2. Section 3 explains some A(`)-
examples of elementary figures.

If the mean distances between two adjacent parti-
cles are relatively small (relatively high volume fraction),
two types of µ-chords exist. An extension of equation (1)
for isotropic particle arrangements will be considered in
Section 4.

It is useful to describe a two-phase particle system with
the so-called indicator function i(r), which is 1 within and
0 outside the particle phase [1], instead of local densities
in each point in real space. For arrangements of all kinds
of such smooth model-particles the basic law I(h) ≈ h−4,
if h → ∞, holds. This is highly valuable information for
data evaluation, for the step from I(h) to γ′′, see [10,12]
and for more details Sobry and Ciccariello [13–15]. In Sec-
tion 5 three examples concerning the step from I(h) to γ′′
will be explained.

Considerations of c.l.d.’s for non-convex figures are rel-
atively rare. Section 6 will deal with this case and consider
particles with hollow parts. Finally, Section 7 investigates
a long-standing problem: the analysis of the behaviour of
A(`) near the largest particle dimension ` = L. Strategies
for a direct estimation of L from the c.f. are included.

1.1 The distance distribution density p(r)
and the c.l.d. A(`)

Among many possibilities there exist the following two to
“indicate” particles.

1. The particles may be considered and analyzed as the
sum of all their volume elements dVi. Analysing the
distances ri between all points of the particle volume(s),
the distance distribution density p(r) of the particle, see
[9,10], results. The connection between γ(r) and p(r) is
given for any particle shape, involving a whole volume V0,
by p(r) = 4πr2γ(r)/V0. For convex particles the moments
of A(`) can be expressed and interpreted by those of p(r),
see Damaschun and Pürschel [16].

2. Each smooth particle can be defined by use of a well-
defined border with finite surface area, see Figure 1. In
this case, the border distribution function pb(r) of the
particle border can be given, but it is more convenient to

operate with c.l.d.’s, reflecting the features of the inter-
face(s) between one or more particles. Evidently, c.l.d.’s
are not influenced at all by the inner parts of the parti-
cle(s); they are much more shape-sensitive than p(r). In
fact, merely the analysis of the interfaces of any single
particle leads to an asymptotic expansion for its scatter-
ing behaviour, which is sometimes an excellent approxi-
mation in an unexpectedly wide h-region of the scattering
curve of the particle, Sobry [14]. There exist fully devel-
oped theories, see Lu and Torquato [17] and [11,18,19], for
the interpretation of the c.l.d. in tightly packed isotropic
two-phase systems, which in principle all go back to the so-
called linear integration principle of Rosiwal [20]. The vol-
ume fraction of a two-phase particle system is clearly de-
fined by the mean chord lengths of the particle-phase and
the intermediate-phase (often called matrix phase), see
Section 4.

1.2 Scattering experiment, c.f. and c.l.d.

All structure parameters, defined in the field of SAS, in-
cluding the volume fraction, can be directly put down to
the c.l.d.’s [20]. The normalized c.f., γ(0) = 1, follows from
I(h) by use of a transformation

γ(r) =

∫∞
0 h2I(h) sin(hr)

hr dh∫∞
0
h2I(h)dh

· (2)

An example of a direct determination of the c.l.d. from
I(h), based on equations (2,1), is to operate with

γ′′(`) =
1
l2

∫∞
0 [h4I(h)]′′ sin(h`)

h` dh∫∞
0
h2I(h)dh

, (1.5− 2)nm ≤ ` ≤ `max,

(3)

which is one selected synonymous representation. Equa-
tion (3) is based on the differentiation of equation (2), fol-
lowed by integration by parts [12]. Equation (3) holds true
if the particle system consists of two phases (two differ-
ent densities) with smooth inner boundary surfaces. From
equation (3) the set of c.l.d.’s. can be obtained from ap-
propriate experiments, see Section 5.

The fundamental equation (1) can be used in the trans-
parent single-particle case, see next section, as well as,
in principle, for particles with hollow parts or for tightly
packed particle arrangements. Of course, a lot of special
problems, concerning the details of this concept, are of
interest to this technique of data evaluation in SAS, for
the comparison of model-c.l.d.’s with experimental ones,
see Gille [18,19]. Here it is remarkable that Guinier and
Fournet [9], have proposed one special chord-type and
Tchoubar [11], has explained two chord-types. Now, the
three basic types of c.l.d.’s will be explained in the next
section.
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a) b) c)

Fig. 1. a) µ-chords, fµ(`) ≡ A(`): Isotropic-Uniform-Random-chords, IUR-chords arise if X is evenly rotated in all directions
in space within a field of straight lines. This situation directly corresponds to the determination of I(h) for the SAS experiment
of a so-called isotropic system. Here, each differentiation step of γ(`) corresponds to one end of the IUR-chord l, see Enns and
Ehlers [21] and Teichgräber [22] and Fanter [23]. b) ν-chords, fν(`): Weighted randomness chords arise if, after a choice of evenly
distributed points within X, straight lines are defined for each point having IUR-orientation. In many fields of radiation research
and dosimetric considerations the term I-chord-randomness or Interior Radiator Randomness (IRR) is used. c) λ-chords, fλ(`);
Two-point-random-chords result if a chord is defined by two independent points P1, P2 which are evenly distributed in X.

2 Geometric definitions of the c.l.d.
of a single particle

There exist different types of randomness for the intersec-
tion of a convex body by straight lines. Mainly three types
of chords are in use, which appear in well-investigated cir-
cumstances. Figure 1 explains µ-, ν-, and λ-chords in the
case of any convex geometric figure X.

These c.l.d.-types are connected, in the case of any
convex X, with volume V and surface area S by,
see [11,13,15,18,22,23]:

A(`) ≡ fµ(`) =
4V
S

1
`
fν(`) =

12V 2

πS

1
`4
fλ(`). (4)

Equation (4) also holds true in the case of non-limited
sets X, for example for infinitely long cylinders or for a
layer. The first moment of A(`) used in equation (4) cor-
responds to a special case of Cauchy’s formulæ: denoting
the spatial orientation angles of a chord direction by the
random angle-variables α (horizontal angle, equally dis-
tributed in (0,2π)) and by θ (angle to a fixed z-axis in
the particle, distributed with density cos(θ)/(π/2)), then
the ratio of V and the projection area of the particle
Sp(α, θ), averaged over all IUR-directions, gives Cauchy’s
conversion factor 4V/S. It was also used in equation (1).
The representation equation (5) is more compact, but see
equations (21, 24).

` =
V

Sp(α, θ)
· (5)

Initially, ν-chords fν(r) = g(r) were introduced into struc-
ture research in [9] under the formal name “chord distribu-
tion”. Later works introduced a clear connection between
SAS and µ-chords. This is the basis for the computer-
chord-simulation, see [22,23].

0 0.5 1 1.5 2
l

0.2

0.4

0.6

0.8

1

A
(l)

H

S

Fig. 2. Sphere (S) and hemisphere (H) with the same radius
R = 1. Here it is directly possible to recognise the biggest
diameter of the particle, L = 2. But in other cases this is not
possible, see Figures 14 and 21.
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Fig. 3. Ellipsoids, L = 6, with semi-axes {a,b,c}: (1){1,1,3},
(2){1,3,3}, (3){1,2,3}. The small differences between (2) and
(3) would be undetectable in such plots if exclusively the c.f.
or the distance distribution of these particles were analyzed.

3 A(`)-functions of elementary geometric
figures

3.1 Fingerprint properties of selected geometric shapes

The Figures 2–5 show µ-c.l.d.’s of selected geometric
shapes. Each behaviour of A(`) has its specific peculiari-
ties and is a geometric fingerprint of the interface of the
particle [22–31].

The situation that two different three-dimensional
figures possess the same c.l.d. has been unknown until
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Fig. 4. Infinitely long cylinder D = 1, curve (1), and lamella
H = 1/2, curve (2) with the same mean chord length ` = 1.
The general cylinder-case was studied by Gille [8].
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Fig. 5. Parallelepipeds with edges {a,b,c}: (1){1,1.2,1.4},
L = 2.097 and (2){2,3,∞}, limiting case of a rectangular
bar. In both cases the exact L is undetectable from A(`), see
Ciccariello [15]. Here, A′′′(`) must be considered in order to
study L. The spectrum of possible a,b,c - combinations is far-
reaching, see [27,31].

today. The case of arrangements of particles with a size
distribution and their c.l.d. was considered in detail by
Fanter [23].

A new quality results, in the case of non-convex figures
or figures with hollow parts, or if chords between the par-
ticles have an influence in the particular r-interval under
consideration. This will be studied in the Sections 3.2–3.5.
and in Section 4.

3.2 The hemisphere case: an example of an analytic
representation of A(`)

For analytical representations of c.l.d.’s, interval splittings
are indispensable, see [27] and Gille and Handschug [28].
The A(`)-function of a hemisphere with radius R can be
written in a compact form without any approximation,
but see also Enns and Ehlers [21].

A detailed explicit solution, including an analyti-
cal representation of the c.f., was calculated lastly, see
[28,29]. fµ(`), see Figure 2, consists of two independent
parts. On the one hand, basic-chords which hit the base
surface of the hemisphere are considered. Independent of
these, on the other hand, those chords which do not hit
the basic surface, the cap-chords, are investigated likewise.

Considering the mean projection planes of the hemisphere
into a direction perpendicular to the chord direction
follows.

The probability that a µ-chord is a cap-chord is 1/3.
The probability that a µ-chord is a basic-chord is 2/3.
Both chord types possess their own distribution densities,
see [28]. The final result for all chords, obtained from
both parts by averaging, writes as follows:

1. Interval 0 < ` ≤ R

fµ(`) =
2
3
`

R2
+

1
πR

√
1− `2

4R2

+
2R

3π`2

[√
1− `2

4R2
− 2R

`
arcsin

(
`

2R

)]
·

(6)

2. Interval R ≤ ` ≤ 2R

fµ(`) =
1
πR

√
1− `2

4R2

+
2R

3π`2

[√
1− `2

4R2
+

2R
`

arccos
(
`

2R

)]
·

(7)

The author doesn’t know another simple geometric figure
possessing exactly this c.l.d. In this light, some distinc-
tive derivatives of A(`) at special `-positions are summa-
rized now. Contrary to the sphere, to the cone and to the
cuboid, this result, equations (6, 7), see Figure 2, is con-
tinuous in 0 < ` < 2R, and particularly, too, at transition
positions ` = R and ` = 2R. It holds that:

fµ(0+) =
8

9πR
· (8)

The largest particle dimension L = 2R can be detected
from the left-hand derivative of fµ(2R), which equals −∞
here. This detail differs extremely from the behaviour ob-
tained for other geometric figures, see also Stoyan and
Stoyan [8], pp. 135-138. The global maximum of fµ(`) lies
at ` = R. Also the position ` =

√
2R, possessing the

fµ-values

fµ(R) =
15
√

3 + 8π
18πR

, fµ(
√

2R) =
8 + π

6
√

2πR
, (9)

is specific for this shape. The left-hand and the right-hand
derivatives f ′µ(R±) are

f ′µ(R±) =
−25
√

3∓ 24π
18πR2

· (10)

The first two derivatives of fµ(`) at ` =
√

2R are the
following:

f ′µ(
√

2R) = −16 + 3π
12πR2

, f ′′µ (
√

2R) =
√

2(2 + π)
2πR3

· (11)
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From equations (6, 7, 10, 11) follows the existence of a
point of inflexion of fµ(`i) in

√
2R < `i < 2R. From equa-

tions (6, 7) it follows that the theoretical relations for the
moments of fµ are in agreement with the theory M0 = 1,
M1 = 4V/S and M4 = 12V 2/(πS). The second moment
M2 equals R2. A general form for M2 is still unknown.

3.3 One-Chord Distribution and Multi-Chord
Distributions (OCD and MCD)

In the case of particles containing one or more hollow
parts, it is a good idea to consider two different types
of distributions. The MCD-type, the natural case of SAS,
see Porod [32], is generated if each chord-length-segment
is taken for itself. On the other hand, it can be useful to
consider the sum of all chord segments through the parti-
cle on one straight line as the random variable. This is the
OCD-case, ` = `1 + `2 + `3+ ... The following examples
use the abbreviation:

x = |term(`)|ba stands for: x = term(`),
if a < ` < b, else x = 0. (12)

3.4 Hollow sphere of diameter d with central hole
of inner diameter di and the corresponding plane
figure, the circular ring

The c.l.d. of the hollow sphere in the MCD-case is, see
Figure 7:

AMCD(`) =
∣∣∣∣ 2`
d2 + d2

i

∣∣∣∣
√
d2−d2

i

0

+

∣∣∣∣∣∣∣∣
4
[(

d2

4 −
d2

i
4

)2

− `4
]

`3(d2 + d2
i )

∣∣∣∣∣∣∣∣

√
d2−d2

i
2

d−di
2

·

(13)

The c.l.d. of the hollow sphere in the OCD-case is, see
Figure 6:

AOCD(l) =
∣∣∣∣ 2l
d2 + d2

i

∣∣∣∣
√
d2−d2

i

0

+

∣∣∣∣∣
(
d2 − d2

i

)2 − `4
`3 (d2 + d2

i )

∣∣∣∣∣
√
d2−d2

i

d−di

·

(14)

The sphere, diameter d = 4, with central void, diameter
di = 2, is considered in Figures 6, 7. The first moments
of the c.l.d.’s are 1.87 in the MCD-case and 2.35 in the
OCD-case. These special results coincide with the modi-
fied Cauchy theorem

`MCD =
4V
S
, `OCD =

4(Vc + V2)
S

· (15)
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Fig. 6. OCD of a hollow sphere.
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Fig. 7. MCD of a hollow sphere.

S is the whole (inner plus outer) surface. In this light, the
modification in equation (15), exclusively necessary in the
OCD-case, consists in a splitting of the numerator-volume-
term into a sum of two different volumes. The part Vc is
the volume of the convex region (sphere volume minus
the common volume of the sphere with a long circular
cylinder of diameter di) and part V2 is double the volume
of the non-convex region of the hollow sphere (common
volume of a long cylinder of diameter di minus the volume
of the central void).

3.5 Circular ring of diameter d with central circle
of inner diameter di

Here, poles in the c.l.d.’s occur. This behaviour is well-
known referring to the c.l.d.’s of the sphere and of a cir-
cular area. The c.l.d. in the MCD-case is, see Figure 9:

AMCD(`) =
∣∣∣∣ `

(d+ di)
√
d2 − `2

∣∣∣∣
√
d2−d2

i

0

+

∣∣∣∣∣∣∣∣∣∣
2di

d+ di

(d2 − d2
i )2 − 16`4

16d2
i `

3

√
1−

�
d2
4 −

d2
i
4 −`2

�2

d2
i `

2

∣∣∣∣∣∣∣∣∣∣

√
d2−d2

i
2

d−di
2

·

(16)
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Fig. 8. OCD of a circular ring.
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Fig. 9. MCD of a circular ring.

The c.l.d. in the OCD-case is, see Figure 8:

AOCD(`) =
∣∣∣∣ `

(d+ di)
√
d2 − `2

∣∣∣∣
√
d2−d2

i

0

+

∣∣∣∣∣∣∣∣
2di

d+ di

(d2 − d2
i )2 − `4

4d2
i `

3

√
1− (d2−d2

i−`2)
2

4d2
i `

2

∣∣∣∣∣∣∣∣
√
d2−d2

i

d−di

·

(17)

The extension of the Cauchy theorem for a plane figure,
equation (18), is analogous to equation (15)

`MCD =
πS

u
, `OCD =

π(Sc + S2)
u

(18)

with whole perimeter u and with the surfaces Sc, S2. The
Figures 8, 9 show plots in the case d = 4, di = 2. The first
moments of these c.l.d.’s are 1/

√
3+5π/9 in the OCD-case

and π/2 inthe MCD-case.
The basic form of equation (15) and equation (18) is

unchanged for similar non-convex figures, see [19]. This
also includes the case that the void has a more compact
form or is not placed in a central position. Certainly, av-
eraged numerator-terms in equations (15, 18) will be used
then.

Fig. 10. One straight test line intersects particles in a two-
phase system with about p = 20%. Chord lengths `i (within
the particles) and mi (outside the particles) result. On the
other hand a sequence of sum-possibilities, like `i +mi, mi + `i
or `i +mi + `i or mi + `i +mi, indicate details of the particle
arrangement, and details of the packing-characteristic of the
particles, see [18]. Both effects are mixed in one function γ′′.

4 Particle arrangements with a volume
fraction p

In the case of a tightly packed arrangement of particles,
two types of chord segments (denoted by `i and mi, see
Fig. 10) exist, alternating on a sufficiently long test line
through the system. In cases p → 0 it is more diffi-
cult, sometimes unrealistic, to observe extremely long mi-
segments. But, mi-segments always exist in practice.

4.1 The distribution densities φ(`) and f(m)
for the isotropic case

The chord segments on one testline alone reflect a great va-
riety of information about the particle arrangement and p.
According to the standpoint of Tchoubar [11], here two ba-
sic c.l.d.’s exist, named φ(`) and f(m). Both distribution
densities are closely connected with the function γ′′(r).
The identity φ(`) ≡ A(`) ≡ fµ(`) holds in the special case
p = 0; f(m)→ 0is not considered then.

If particles of a typical extent of 10 nm (at about 50%
volume fraction) are supposed in a sample of the thickness
(0.1−1) mm, then already one straight line in the direction
of the primary beam intersects 104 − 105 particles. Thus,
there exist more than 108 chord segments in the irradiated
volume of a realistic neutron or X-ray primary beam; this
is more than enough for a statistical description strategy
of the irradiated sample volume. Consequently, the theo-
rems of differential calculus are applicable. Here, Dirac’s
δ-function must appear as a result of the differentiation of
the γ(r) singularities at the particle borders. The simplest
example for the appearance of a δ-function is the rod of
length L with the c.f. γR(r, L) = 1 − r/L, if r < L and
γR(r, L) = 0, if r > L. Here, the function γ′′R is given by:
γ′′R(r, L) = δ(r − L). It does not include any information
about the distances r < L at all. In all cases known, γ′′ is
simpler to represent than γ, as a consequence of geometry.



W. Gille: Chord length distributions and small-angle scattering 377

4.2 Connections between φ(`), f(m) and γ′′(r)

If li and mi are random variables which are independent
of each other, a general connection

`(1− p)γ′′(r) = [φ(r) + f(r)− 2φ(r)∗f(r))]∗
[δ(r) + (φ(r)∗f(r)) + (φ(r)∗f(r))2∗ + ...+ ..]− 2δ(r)

(19)

holds true. Equation (19) is an approximation for the mu-
tually dependent `i, mi. The symbol “∗” stands for the
convolution in the r-direction and ` is the first moment
of φ(`). Equation (19) demonstrates the fact that the
two distribution densities φ(r) and f(r) define γ′′(r). On
the other hand, it is not possible to determine φ(r) and
f(r) from the one and only experimental function γ′′(r).
Additional geometric information is welcome here. Cer-
tainly, f can be eliminated from equation (19), if γ′′ and
φ are known. This can be useful in practice if the particle
shape is known, see [18]. The f(m)-result is a sequence of
convolution-terms including δ-functions.

f(r) = [(1− p)`γ′′(r) + 2δ(r) − φ(r)]∗
[δ(r)−(1−p)`γ′′(r)∗φ(r)+(1− p)`(γ′′(r)∗φ(r))2∗−...+...].

(20)

Really, in equation (20) f and φ may be exchanged; φ
corresponds to p and f corresponds to 1− p.

4.3 Example: A linear system with l1=l2=3=const.,
m1=2=const.

The interpretation of the behaviour of γ(r) and γ′′(r), de-
fined by equations (19, 20), is demonstrated for a simple
surveyable case in Figure 11. Two one-dimensional parti-
cles of size 3, separated by a gap of length 2 in a system of
length 8 (r-interval 0 ≤ r ≤ 8), are studied. The particle
indicator function i(r) is given by: i(r) = 0, if 3 < r < 5,
else i(r) = 1. The meandensity is 6/8. γ(r) is the normal-
ized convolution square of the density fluctuations, see
equation (21), Debye and Bueche [33]

γ(r) =

∫ L
0
η(x+ r)η(x)dx∫ L

0
η2(x)dx

· (21)

4.4 Chord lengths in a Boolean model with spherical
primary grains

Another case, in which detailed analytic expressions of
equations (19, 20) are known, is a so-called Random
Closed Set (RACS), see Serra [2], Hermann [34]. Com-
pact expressions for γ(r) exist, see [35]. The mean chord
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Fig. 11. The (electron) density fluctuation, fl. η(r), defines a
finite linear two-phase system with the order distance L = 8
and volume fraction p = (`1 + `2)/L = 75%. γ′′(r) consists
of five δ-terms: At r = 0 and r = m1, r = `1 = `2 and r =
`12 + m1 and r = L, see equation (19). The function γ′′(r)
of each tightly packed system involves both MCD-terms and
OCD-terms. There exists a positive OCD-term at r = L =
8, γ′′(L) > 0. The peak at r = 5 = `1 + m1 = `2 + m1

possesses a “curvature” to the right, γ′′(5) < 0. This reflects a
negative OCD-term, see the position r = `1 + m1 = 25 nm in
Figures 19, 20.

lengths in both phases are

` =
∫ L

0

`φ(`)d` = −exp(N)
γ′(0)

,

m =
∫ L

0

mf(m)dm = − 1
(1− exp(−N))γ′(0)

, N = λV0.

(22)

In the Boolean model, for details see [1,2], γ(r) depends on
γ0(r), the c.f. of the primary particles (p.pa.) with mean
volume V0. The variable λ is the intensity of the Poisson
process (number of primary particles per volume). In the
limiting case of an infinitely diluted system γ(r) = γ0(r)
holds. Then λ → 0, N → 0, p = 1 − exp(−N) → 0. The
mean average µ-chord length d of the particle system is

d =
`+m

2
· (23)

Figure 12 shows a cubic section of such a set, constructed
from 20 primary points and the corresponding spherical
primary particles, in a test volume of 103, with the pa-
rameters: λ = 0.02, N = 0.223, p = 20%. The diameters
Di of the p.pa.’s are evenly distributed in the D-interval
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Fig. 12. A geometric simulation of a Boolean model with the corresponding structure functions. The functions γ and γ′′ are
non-negative for such systems. The limiting values γ′(0) = −0.5511 and γ′′(0) = 0.0606 define p; p = γ′′(0)/[γ′(0)]2 see [35].

1 < D < 4, see V (D) in Figure 12. The average volume of
the p.pa.’s is about 11. There exists a short-range order
L (L is the biggest dimension of the biggest p.pa.). Thus,
V (D) produces L = 4 in this type of model.

5 The determination of c.l.d.’s from
SAS-experiments

All methods of structural interpretation of SAS data
mainly deal with a precisely recorded intensity curve (2%
noise or less) on high-precision hk-abscissas. Then, the
calculation of γ, γ1, γ′′ from SAS-curves, see for example
Feigin and Svergun [10], is no problem for specialists of nu-
merical mathematics today. There exist a lot of methods
which are applicable for common laboratory-experiments
as well. Modern computational systems, like Mathematica
[36], are the toolkit used in the laboratories. In the follow-
ing, three typical examples for the transformation from
I(h) to γ′′(r) are explained. The experimental informa-
tion is based on the data Ik(hk) given on discrete points
in a limited h-interval, hmin < h < 1.5/nm.

One specific test simulation (determination of A(`) for
a single sphere), a typical scattering curve from the field of
porous substances (silica aerogel scatterer, tightly-packed
two-phase system with L = 20 nm), and an example
from polymer physics (lamellar structure of a low-density-
polyethylene Buna-PE 539 sample, L = 35 nm). For de-
tails about Figure 15, see Schaefer [37].

The resulting functions γ and γ′′(r), calculated from
a simulated Ik(hk)-experiment (N = 30 points, hmin =
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Fig. 13. The c.f. of a L = 7 nm-sphere.
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Fig. 14. A(r) calculated from simulated data.

0.05/nm, hmax = 1.5/nm, 3% noise of Ik and 2% noise
of hk), are given in Figures 13–14. Instead of an ex-
trapolation of I(h) for h → ∞, “backward extrapola-
tion” (see below) was applied. Figure 14 shows beside the
numerical result the theoretical one. Experience in this
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Fig. 15. I(h) from a porous silica aerogel.
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Fig. 16. I(h) of PE 539, author measurement.
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Fig. 17. The c.f., corresponding to Figure 15.

field shows that from an SAS-precision experiment much
better results than in Figures 13–14 can be expected
(smaller noise and N > 30 recorded Ik(hk)-values). The
sphere-simulation-test case is by far one of the most fastid-
ious tests. Likewise, γ and γ′′, see Figures 17–18, were ob-
tained from the two following experiments Figures 15, 16.

The peaks of γ′′ in Figure 18 approximately correspond
to the mean chord length in the air-phase and the solid-
phase of the sample, L = 20 nm. Thus, from the mean
chord lengths of the pores, 6 nm, and of the solid phase,
15 nm, follows c = 6/21 and 1/γ′(0) = −4.3 nm. The
latter can be obtained from the c.f. in Figure 17, too.

The first peak of γ′′ in Figure 20 characterizes
the c.l.d., φ(`), of crystalline lamellas (the shoulder is
connected with a so-called intermediate lamella). The
second main peak represents the c.l.d. f(m) of the
gaps between the lamellas. The main negative peak,
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Fig. 18. γ′′, calculated from I(h), Figure 15.

0 10 20 30 40
r/nm

0.2

0.4

0.6

0.8

1

γ

Fig. 19. The c.f. of the PE-sample.
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Fig. 20. γ′′(φ(r) and f(r)) of the PE-sample.

r = 25 nm, corresponds to the sums of the segments
`i +mi, see Figures 10, 11 and equation (19).

The corresponding interface distribution function g(r),
Stribeck and Ruland [38], g(r) = [3γ′′(r) + rγ′′′(r)]/2 was
computed and discussed in [39]. Here, g(r) has a lot in
common with γ′′(r). This is based on the following fact.
Considering a straight line (IUR-orientation) in a tightly
packed arrangement of lamellas, it can be observed that
the heights of the lamellas, and also of the interspaces, are
directly proportional to both types of chords `i and mi,
which result here; see the singularities in curvature of γ(r)
in Figure 11.

The structure functions in Figures 13–14, 17–18,
19–20 were obtained without application of any “final-γ′′-
smoothing procedure”. A direct procedure of data eval-
uation, named “backward extrapolation”, see [18,19], was
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used. It is based on the transition function t(r, hu) of a
parametric integral defined by

t(r, hu) =
∫ hu

0

I(h)K(r, h)dh, 0 ≤ hu ≤ hmax. (24)

In the parametric integral, equation (24), the experimen-
tal function I(h) occurs together with an oscillating kernel
K(r, h), which is known exactly. In typical casesK is given
by K(r, h) = sin(hr)/(hr) or by K(r, h) = cos(hr) or by
the corresponding Bessel functions. Usually t(r, 0) = 0
holds. It is obvious that t(r, hmax) does not lead to the
best approximation. K oscillates and gives positive and
negative values (in some cases a fixed period 2π/r oc-
curs). Therefore, also t(r0, hu) is oscillating. For each con-
stant r, the integral is approximated considering the most
probable value of the function t(r, hu) for hu in the inter-
val 0 < hu < hmax = 1.5/nm. This can be handled by
statistical methods, for example by analysis of the first
moment of the distribution density of the t-values (t is
then considered to be a random variable).

In cases r < π/hu the “information content” of t in
terms of hu is too small to enable a precise estimation.
This is in complete agreement with the sampling theo-
rem of information theory. On the other hand, an atom-
complex of about 1 nm diameter or smaller (a sharp size-
limit does not exist) is not a smooth particle.

6 The maximum particle diameter L

The largest particle diameter L is the upper integra-
tion limit of all integrals in real space in the whole field
of SAS. Therefore, L should be estimated by use of all
experimental methods evaluable before the first step of
each SAS-data evaluation procedure. This holds for di-
rect transformation procedures as well as for indirect ones,
Feigin and Svergun [10].

There are cases, in which L of a single isolated parti-
cle can be excellently identified, considering the structure
functions γ(r), r2p(r) or the c.l.d. of the particle; but this
does not work in all cases. Sometimes the L-determination
fails, operating with a simple γ-plot, demonstrated in the
left-hand part of Figure 21.

6.1 The L-parameter as a special chord length

It is a long-standing problem to analyze the behaviour
of the c.l.d. of a single, isolated particle for the so-called
“extremal chords” (e.c.’s) of the particle. The e.c.’s are a
bit shorter than L, ` = L− ε. General shape-independent
analytical results are based on an approximation of the
particle surface in the two extreme points using the prin-
cipal curvatures, see Gille [40]. The results, see Table 1 in
the next section, are highly-symmetrical square root ex-
pressions which coincide with the limiting results of an
ellipsoid.

Table 1. Representation of A(L) andA′(L) for a single particle
in two and three dimensions, see [40].

Surface

approximation A(L) A′(L)

in with

R2 2 curvatures + `
S0

g(D1,D2)
a(D1,D2)

−A(L)
h

2
D1+D2

+ δ(`− L)
i

R3 2 curvatures 0 −π2
`
V

�
g(D1,D2)
a(D1,D2)

�2

R3 4 curvatures 0 −π
2
`
V
g(Do1,Du1)
a(Do1,Du1)

g(Do2,Du2)
a(Do2,Du2)

In the case of three-dimensional figures, besides γ(L) =
0, γ′(L) = 0 also holds true. Singularities in A(`) ∼ γ′′(`)
only occur in the special case in which all mean curvatures
in the two intersection points of the e.c.’s are exactly the
same. This is the case with a single sphere. The next sec-
tion considers a more general case.

6.1.1 A’(L) for two- and three-dimensional figures

The study of the behaviour of A(`) for the e.c.’s gives the
following results in terms of the curvature of the consid-
ered particle near the e.c., having an upper and a lower
end. In the most general case of ellipsometry, A′(L) is
given in terms of four parameters, two upper {Du1, Du2},
and two lower {Do1, Do2}, mean curvature diameters. It
holds that, see [19]:

A′(L) = −π
2
`

V

√
Do1Du1

√
Do2Du2

L

1√
L− 1

2 (Do1 +Du1)

× 1√
L− 1

2 (Do2 +Du2)
· (25)

In equation (25), L extends from the lower particle end
(index o1,2) to the upper one (index u1,2). A′(L) is fixed
in terms of the curvatures at the particle ends. Moreover,
Table 1 shows the connections in six cases in a more com-
pact form.

The abbreviations in Table 1 are the functions g and
a, defined by the mean values:

g(x, y) =
√
xy

L
, a(x, y) =

√
L− x+ y

2
·

All relations are symmetrical with respect to the geomet-
ric and arithmetical means g(x, y) and a(x, y). The A(`)
functions considered in the Figures 2–5 and 7, 9 possess
the properties given in Table 1.

In addition, a far-reaching analogy between the results
in the plane and those in space is notable in Table 1.
In the transition from plane to space, each new curva-
ture possible is represented by one new square root term.
Further, for each of the curvature parameters Dc in
Table 1, 0 ≤ D1, D2, Do1, Do2, Do2, Du1, Du2 < ∞ holds.
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Considering any limiting case Dc → 0, the considered
terms A(L) and A′(L) disappear. Then, it is no use try-
ing to determine L by differentiating the c.f. In order to
determine L in such a case, other methods must be used,
see Müller et al. [41] or the transformation explained in
Section 6.2.

Such an exceptional geometric figure, in which L can-
not be detected by equation (25) or by Table 1, is the
cuboid.

6.1.2 A’”(L) for the cuboid

The c.l.d. of a cuboid (edges a, b, c, 0 < a < b < c < ∞)
was considered, see [27]. The corners at the end of the
space-diagonal of length L =

√
(a2 + b2 + c2) correspond

to Do = Du = 0. Consequently, in agreement with
equations (25, 26) and Table 1, A(L) = 0 and A′(L) = 0
results. Further, from equation (26), which represents
A(r, a, b, c), anew follows A′′(L) = 0.

A(r, a, b, c) =

8
πS

{
−3

4
r +

1
r3

[
a4 + b4 + c4

12
− a2b2 + a2c2 + b2c2

2

+ aF (sa) + bF (sb) + cF (sc)

]

+
abc

r3

[
+a

(
arctan

(
c√
r2−s2

b

)
−arctan

(√
r2−s2

c

b

))

+ b

(
arctan

(
c√

r2 − s2
a

)
− arctan

(√
r2 − s2

c

a

))

+c

(
arctan

(
a√

r2 − s2
b

)
− arctan

(√
r2 − s2

a

b

))]}
·

(26)

Abbreviations: sc =
√
a2 + b2, sa =

√
b2 + c2, sb =√

a2 + c2, F (x) =
√
r2 − x2

(
x2

3 + 2
3r

2
)
, S = 2(ab + ac

+ bc).
Furthermore, the detailed treatment of the differentiation-
project then finally yields a limit A′′′(L) < 0 for the
c.l.d., connected with the two convex corners at the end
of the space diagonal. This specific limit is given by
equation (27),

A′′′(L) = − 4
π

(a2 + b2 + c2)2

a2b2c2(ab+ ac+ bc)
= − 8

π

(a2 + b2 + c2)2

V 2S
·

(27)

This manner of presentation, an extension of
Table 1, means that the L-determination by differ-
entiation would require a 5th derivative of γ(r) for this
geometric figure. Consequently, another strategy must
be pursued to determine the largest particle dimension
L, see next section. The case of a steep cone is similar,
see [30].
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Fig. 21. c.f. and t.c.f. for a cube (curve C) with edge length
√

3
and an ellipsoid (curve E) with semi-axes {a = 1, b = 1, c =
1.5}. The longest chord is L = 3 in both cases. This value
follows from the t.c.f., but cannot be detected directly from
the c.f.

6.2 Determination of the largest particle diameter L
via γT(r)

The last section demonstrates that even in a diluted par-
ticle system the determination of L is often complicated.
A method, explained and tested with simulated and ex-
perimental scattering curves in [41] uses a new integral
transform of SAS-data. This method requires a Struve-
transform of the scattering data. It is tailormade for the
more general case of smeared scattering curves.

Another practicable method to estimate L is the
method of the transformed correlation function, t.c.f.,
γT (r). This function is normalized similarly to γ(r) and
defined by:

γT (r) =
2
π

arcsin
(

1− [γ(r)]
1
3

)
, 0 < γ(r) < 1. (28)

A particular application of equation (28), see also Gille
[42], is demonstrated in Figure 21.

In the case of the cube the differentiation of γ(r), in
order to determine L, does not make sense, see Table 1
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and equations (25–27). Nevertheless, the t.c.f. clearly in-
dicates the length of the space diagonal L = 3 in the
form γT (3) = 1. The comparison of cube and ellipsoid
in Figure 21 demonstrates that the c.f. of the cube ex-
tremely closely “snuggles” to the axis of abscissas near r =
L− ε, much more closely than the c.f. of the ellipsoid, see
Table 1 and equations (25–27).

7 Summary

The c.l.d.-concept is by far more than only the discussion
of a second derivative of a certain function f(x) = γ(x) in
the style of a formal curve-discussion. The set of c.l.d.’s,
γ′′(r), contains the peculiarities of all particle borders in
a compact form, without being at all influenced by the
“inner life” of particles and of particle to particle gaps.

Physical structure functions, which are closely con-
nected with the geometric covariance, can be calculated
numerically from SAS-experiments. This includes the de-
termination of an approximation of the c.l.d. of the typical
microparticles of interest. The characterization of prac-
tically all particle shapes can be completed by compar-
ing the experimentally obtained c.l.d.’s with theoretical
ones. The latter requires a large spectrum of c.l.d.’s in
an analytic form. It further requires a theory which in-
cludes particles with hollow regions (MCD-case and OCD-
case) and tightly packed particle arrangements (simulta-
neous consideration of the basic dependencies between
the three structure functions φ(`), f(m), γ′′(`)). The
MCD-case is the classic situation of geometric models in
SAS. But, for tightly packed systems γ′′(`) reflects OCD-
distances as well. MCD-distances produce always posi-
tive peaks. Otherwise, OCD-distances produce negative
terms of γ′′, if the number of chord segments in the sum
(`1 +m1) + (`2 +m2)+... is even. OCD-distances produce
positive terms of γ′′, if the number of chord segments in
the sum `1 +m1 + `2+... is unpaired.

The step from the experiment to the c.l.d. requires
concentration upon a limited h-interval, h < π/(1.5 nm),
in all steps of experiment and data evaluation. The ques-
tion, how exactly must an experiment be performed in or-
der to calculate γ′′, can be answered, independent of the
used function-system in the numerical data evaluation, in
a simple way: I(h) must be measured accurately enough
so that I ′′(h) can be calculated from these data. Then,
the c.l.d. can be determined, e.g. by use of equation (3)
by way of a smoothing h-integration. But, equation (3)
combined with the “backward extrapolation” is by far not
the only possible way for reducing the truncation errors.
Worldwide, there are a lot of excellent numerical packages
for data treatment and data evaluation in this field, see
also the special packages of the Mathematica program [36],
Signals and Systems.

The determination of the largest particle diameter L
by differentiating γ(r) for a single particle works in cases
where there are finite principal curvatures in the particle
points farthest apart. The consideration of the sequence

{γ(L), γ′(L), A(L), A′(L),...} does not allow the estima-
tion of L if infinite curvatures in the most distant particle
points exist. Here, the t.c.f.- method can be applied to de-
termine an approximation of one or (in exceptional cases)
more range-orders Li.

If the principal curvatures in each endpoint of L have
finite values, a large spectrum of A(L)-cases and A′(L)-
cases of geometric figures can be evaluated, as outlined in
Table 1. Moreover, Table 1 indicates possibilities for the
characterization of the principal curvatures of microparti-
cles of disperse materials from scattering experiments.
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35. W. Gille, Part. Part. Syst. Charact. 12, 123 (1995).
36. Wolfram Research, Inc., Mathematica, versions 3 and 4,

Champaign, Illinois 1996/98.

37. D.W. Schaefer, X-ray scattering curve of a porous silica
aerogel of density 0.36 g/cm3, (Sandia Nat. Laboratories,
1993). These data were presented at the NATO Advanced
Study Institute on Modern Aspects of SAS. Como/Italy
May 12-22.

38. N. Stribeck, W. Ruland, J. Appl. Cryst. 11, 535 (1978).
39. W. Gille, Direct calculation of the interface distribution

function and other structure functions from SAS-curves,
Halle, 1998.

40. W. Gille, Comp. Mater. Sci. 15, 50 (1999).
41. J. Müller, W. Gille, G. Damaschun, Direct determination

of the largest diameter of a particle by a new transforma-
tion of X-ray scattering data, unpublished report, 22 p.,
Berlin and Halle 1993.

42. W. Gille, Comp. Mater. Sci. 18, 65 (2000).


